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Introduction
 Birds have long been important in basic and applied 
scientific research due to their unique biological fea-
tures and wide-ranging applications [1, 2]. Fertilized 
eggs, along with cells from embryonic and adult tissues, 
are invaluable for investigating fundamental concepts 
in developmental biology, embryology, pharmaceutical 
biotechnology, and vaccine production [3–6]. Among 
avian organs, the liver stands out as one of the largest and 
most complex, playing multifaceted roles essential for 
the organism’s survival and well-being. From facilitating 
hematopoiesis during the fetal period to orchestrating 
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Abstract
Background  Chicken hepatocytes are a valuable resource for cell-based assays and investigating the underlying 
mechanisms of diseases.

Objective  In this study, we examined in vitro generation of chicken hepatocytes from three embryonic 
developmental stages.

Methods  Hepatocytes were isolated from 5-, 7-, and 10-day-old chicken embryos and cultured in DMEM/F12 + 10% 
FBS. After 3 days, we measured proliferation rate, the expression of hepatocyte-specific genes (AFP, ALP, FOXA2, 
CYP3A4, CXCR4, OCT4, NANOG, SOX17), enzyme activity (ALT, AST), albumin production, and urea secretion.

Findings  Morphological examination of individual hepatocytes exhibited a characteristic hexagonal structure 
with prominent nuclei and nucleoli. E10 embryos exhibiting a markedly higher proliferation rate in comparison to 
those from E5 and E7 stages (until 20 days). Whereas, approximately 50% of E5 and E7 hepatocytes showed reduced 
proliferation after three days. In suspension culture, hepatocytes formed spheroids or hepatospheres. The expression 
of hepatocyte-specific genes (AFP, ALP, FOXA2, and CYP3A4) was higher in E10 compared to E5 hepatocytes. The 
expression of stemness/early developmental markers (CXCR4, OCT4, NANOG, and SOX17) was significantly lower in 
E10 than E5 hepatocytes. E10 hepatocytes revealed significantly increased ALT and AST expression and urea secretion. 
While, Albumin production was significantly lower in E10 hepatocytes.

Conclusion  Our results invested that E10 is the optimal developmental stage for the derivation and proliferation of 
chicken hepatocytes in vitro.
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the production of essential proteins, regulating fat 
metabolism, bile production, nutrient homeostasis, and 
detoxification processes, the liver is indispensable for 
maintaining overall physiological balance [7]. At the cel-
lular level, hepatocytes are the primary constituents of 
liver tissue, working alongside other specialized cells like 
fat storage cells and satellite cells [8].

Chicken hepatocytes serve as valuable tools in avian 
research for elucidating drug metabolism and predict-
ing the pharmacokinetics and toxicity of pharmaceuti-
cal agents [9, 10]. By providing critical insights into drug 
clearance mechanisms, they inform drug development 
and enhance safety assessments in avian pharmacology 
[11, 12].

In avian development, embryonic day 5 (E5; Ham-
burger-Hamilton (HH) stages 26–28) is the stage of 
hepatic specification and budding and is composed pre-
dominantly of hepatoblasts– bipotent progenitor cells. 
E7 (HH stages 30–32) is a period of lineage commitment 
and morphogenesis that shows a peak period of hepato-
blast proliferation. Functional maturation then occurs 
by E10 (HH stages 36–38), where albumin production 
becomes more pronounced [13–15].

Despite significant advancements in avian embryonic 
research, including the establishment of highly efficient 
methods for deriving and maintaining pluripotent stem 
cells and germ cells [16–18], achieving reproducible in 
vitro culture of embryo-derived hepatocytes has been 
difficult. This study aims to bridge this gap by investigat-
ing the derivation of hepatocytes from these three dis-
tinct developmental stages: progenitor (E5), transitional 
(E7), and committed (E10).

Materials and methods
 Ethics statement
Fertilized eggs from the White Leghorn (Gallus gallus 
domesticus) were sourced from a commercial farm in 
Ahvaz, Iran, known for adhering to industry standards 
to ensure optimal bird performance. The study protocol 
strictly adhered to the guidelines for the ethical care and 
use of experimental animals as established by the Insti-
tute for Laboratory Animal Research (ILAR) at Ahvaz 
Jundishapur University of Medical Sciences (Ethical no. 
IR.AJUMS.ABHC.REC.1402.065).

Cell culture
Liver tissue was isolated from chicken embryos at embry-
onic days 5, 7, and 10 (E5, E7, E10) following the incu-
bation of fifteen embryonated eggs (5 eggs for each 
stage) at stage X under controlled conditions (37.5  °C, 
60–65% humidity). Sterile dissection techniques were 
employed to separate the embryos from the yolk and 

extraembryonic tissues. The isolated liver tissue was dis-
sected into small pieces and digested with 0.25% tryp-
sin-EDTA (Sigma, USA) for 15 min at 37 °C with gentle 
agitation. The enzymatic activity was halted by adding a 
double volume of complete culture medium containing 
10% fetal bovine serum (FBS), and the resulting cell sus-
pension was centrifuged before being plated onto gelatin-
coated plates.

Cell culture media
The conventional medium comprised DMEM/F12 
basal medium (DMEM, Invitrogen) supplemented with 
10% FBS (HyClone), 2 mM glutamine (Invitrogen), 1 
X non-essential amino acids (Invitrogen), 0.16 mM 
β-mercaptoethanol, and 100 U/ml penicillin and 100 mg/
ml streptomycin (Invitrogen). Following media prepara-
tion, the plates were incubated at 37 °C with 5% CO2. The 
medium was replaced every day and the growth and pro-
liferation of hepatocytes were meticulously monitored 
over a five-day period using an inverted microscope. after 
6–7 days the chicken hepatocytes were dissociated with 
trypsin and the cells were plated on new gelatin-coated 
dishes.

Cell proliferation assay
To monitor the number of hepatocytes, conventional 
method, such as cell counting using a hemocytometer 
counting chamber, was used to calculate the cell density 
every 24 h.

Cell viability assessment
We measured cell viability using the Trypan blue exclu-
sion method right after isolating the cells and found it 
was consistently over > 90% prior to plating them.

Cell spheroid formation
A suspension of 3 × 105 cells/mL was prepared in 
DMEM/F12 + 10% FBS medium. Low attachment bacte-
rial plates (60 mm) were used for cell seeding. Each plate 
was filled with 4 mL of the prepared cell suspension. 
Besides, 1% agarose solution was prepared by dissolving 
agarose powder in sterile phosphate-buffered saline (PBS; 
Invitrogen) or cell culture medium. The solution was 
heated until complete dissolution of agarose, then cooled 
to approximately 37  °C. A layer of the prepared agarose 
solution was added to the bottom of a sterile culture dish. 
The agarose layer was evenly distributed and allowed to 
solidify. After solidification of the agarose layer, 3 × 105 
cells were transferred onto the surface of the agarose in 
the culture dish. The culture dish containing the agarose-
seeded cells was placed in a humidified incubator set at 
37 °C and 5% CO2.
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Gene expression analysis
Total RNA extraction and cDNA synthesis
Total RNA extraction from tissues and standard 2D 
monolayer cultures was performed using TRIZol reagent 
(Invitrogen) according to the manufacturer’s protocol. 
RNA quality assessment was conducted using both UV 
spectrophotometry (Eppendorf ) and agarose gel electro-
phoresis. The purity and integrity of RNA samples were 
evaluated based on the absorbance ratios of 260/280 
and 260/230. A 260/280 ratio between 1.8 and 2.2 and a 
260/230 ratio between 2.0 and 2.2 are indicative of high-
quality RNA, with absorbance values above 280 indicat-
ing the presence of protein and above 230 potentially 
indicating residual phenol contamination.

For gel electrophoresis analysis, the presence of dis-
tinct and sharp bands corresponding to 28  S and 18  S 
ribosomal RNA was observed, confirming RNA integrity 
and quality. The absence of degraded RNA bands further 
validated the high quality of the extracted RNA samples. 
The PrimeScript RT reagent Kit (TaKaRa) was utilized 
for first-strand cDNA synthesis using 1 µg of total RNA, 
and the resulting cDNAs were stored at −20 °C for subse-
quent analysis.

Quantitative real-time PCR (qPCR)
qPCR was performed to quantify the expression levels 
of liver genes using a QuantStudioTM Real-time PCR 
system (Applied Biosystems). The qPCR reaction con-
sisted of an initial denaturation step at 95 °C for 10 min, 
followed by 40 amplification cycles of denaturation at 
95 °C for 15 s and annealing/extension at 60 °C for 1 min. 
High-resolution melting analysis was then conducted 
on the PCR amplicons to ensure the specificity of the 
amplification. Dissociation curve analysis was performed 
using Dissociation Curve 1.0 software (Applied Biosys-
tems) to detect and eliminate potential primer dimer 
artifacts. Melting curve analysis and direct sequencing 
of the amplicons confirmed the presence of a single PCR 
product for all primer pairs, ensuring the specificity of 
the qPCR assay. Data analysis was performed using the 
2 − ΔΔCT method, and the expression levels were nor-
malized to the housekeeping gene β-actin.

Quantification of liver enzyme activity
The medium was changed daily. After 4 days, FBS-free 
medium was added for 48 hours. The supernatant was 
harvested on the sixth day of culture and preserved at 
−20°C. A sandwich enzyme-linked immunosorbent assay 
(ELISA) protocol was employed to measure the enzyme 
activity of alanine aminotransferase (ALT) and aspar-
tate aminotransferase (AST) in hepatocytes. Initially, 
the Capture Antibody was diluted in Coating Buffer, 
and 100 µL of this solution was added to each well of a 
96-well microplate. The microplates were then incubated 

overnight at 4 °C to allow for antibody coating. Subse-
quently, the plates were washed four times with phos-
phate-buffered saline-Tween (PBS-T) 0.05% to remove 
unbound antibodies. To prevent non-specific binding, 
the plates were blocked with 5% bovine serum albu-
min (BSA) diluted in PBST (200 µL/well) and incubated 
for 2 hours at 37°C. After another washing step, 100 µL 
of the sample solution was added to each well, and the 
microplates were incubated for 1 hour at 37 °C to allow 
for antigen binding. Following antigen binding, horserad-
ish peroxidase-conjugated anti-ALT and anti-AST anti-
bodies (100 µL) were added to each well and incubated 
for 1 hour at 37°C. After three additional washing steps 
to remove unbound antibodies, 100 µL of 3,3’,5,5’-tetra-
methylbenzidine (TMB) substrate solution was added 
to each well and incubated for 15 min at room tempera-
ture in the dark to initiate the enzymatic color reaction. 
The color development was then halted by adding 2  M 
sulfuric acid (50 µL/well). Finally, the absorbance of the 
samples was measured at a wavelength of 450 nm using 
a microplate reader, and all samples were processed in 
duplicate to ensure accuracy and reproducibility.

Albumin (ALB) and urea production assays
The medium was changed daily. After 4 days, FBS-free 
medium was added for 48  h. The supernatant was har-
vested on the sixth day of culture and preserved at 
−20 °C. The quantification of secreted ALB in the culture 
media was conducted using Chicken Albumin ELISA Kit 
from Assay Genie following the provided protocols, and 
measurements were taken using purified chicken albu-
min (C7786, BioReagent). The amount of urea generated 
was assessed using a colorimetric assay kit (Biorexfars, 
BXC0126A, 941210). To standardize the results, normal-
ization to total protein content was performed using a 
Total Protein Kit (Biorex, BXC0173A, 921239) in accor-
dance with the manufacturer’s guidelines. Each experi-
ment was performed in triplicate to ensure reliability and 
reproducibility.

Experimental design and statistical analysis
All experiments were performed with a minimum of 
three biological replicates (cells isolated from six inde-
pendent embryos for each developmental stage). Within 
each biological replicate, technical replicates were used. 
Results were presented as the mean ± standard devia-
tion (SD) of biological replicates. For normally distrib-
uted quantitative data, comparisons between two groups 
were performed using the t-test, while the ANOVA test 
was employed for multiple group comparisons. Non-
parametric equivalents were utilized for data that did 
not follow a normal distribution. Significance was set 
at P-values less than 0.001 (***) and less than 0.05 (**) 
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between groups. SPSS software (version. 21) was used for 
data analysis.

Results
Culture of hepatocytes from three developmental stages
Liver tissue was isolated from chicken embryos at E5, E7, 
and E10 using a well-established protocol as described 
in previous study [19], to identify the optimal embryonic 
stage for hepatocyte proliferation. Liver cells underwent 
enzymatic digestion and plated on 0.1% gelatin-coated 
plates in DMEM/F12 + 10% FBS. Figure 1 illustrates iso-
lation and cultivation process from three distinct devel-
opmental stages.

Morphological analyses of hepatocytes isolated from three 
developmental stages
After a 2-day incubation, phase-contrast microscopy 
revealed that the cells had formed small mono-layer 
colonies. The individual hepatocytes within these colo-
nies exhibited a characteristic hexagonal structure, with 
prominent nuclei and nucleoli and a marginal cytoplasm 
(Fig. 2A). After 3 days of incubation, Cell Counting Kit-8 

(CCK-8) was used to determine the number of viable 
cells in each group. E10 hepatocytes showed a markedly 
higher proliferation rate for up to 20 days in comparison 
to those from E5 and E7 stages (P < 0.001) (Fig. 2B).

Suspension cultivation of hepatocytes derived from E10 
embryos
In the suspension culture, E10-derived hepatocytes were 
carefully plated onto both agar-coated and bacterial 
dishes, facilitating distinct environments for cell growth 
and interaction. Over time, the formation of spheroids 
or hepatospheres plates became evident. Phase contrast 
microscopy revealed no significant differences in spher-
oid morphology or number between the agar-coated and 
bacterial dishes cultures (P > 0.05) (Fig. 3).

Gene expression in chicken-derived hepatocytes
We compared gene expression profile between E5 and 
E10-derived hepatocytes on the 5th day of culture using 
qRT-PCR. The results revealed a significant differences 
in the expression levels of eight genes. Hepatocyte-spe-
cific markers (AFP, ALP, FOXA2, and CYP3A4) were 

Fig. 1  The methodology involved in isolating and cultivating chicken embryo-derived hepatocytes from chicken embryos at embryonic days 5 (E5), 7 
(E7), and 10 (E10) encompassed several key steps. Initially, liver tissue was extracted from the embryos at the specified embryonic days using established 
protocols. Subsequently, the isolated liver tissue underwent enzymatic digestion to obtain single-cell suspensions. These hepatocytes were then plated 
onto culture dishes precoated with 0.1% gelatin and cultured in a medium comprising DMEM/F12 supplemented with 10% FBS. Following a suitable 
incubation period, typically 2 days, the cultured cells were examined under phase-contrast microscopy to assess their morphology and growth charac-
teristics. This process facilitated the evaluation and comparison of hepatocyte behavior and development across different embryonic stages, namely E5, 
E7, and E10
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Fig. 2  (A) The morphological characteristics of hepatocytes after 24 h and subsequent to 5 days of incubation, across three distinct developmental 
stages. Upon morphological examination, individual hepatocytes within the colonies displayed a distinctive hexagonal structure characterized by well-
defined nuclei and nucleoli, encased within a marginal cytoplasm. (B) The proliferation rates of hepatocytes were compared across three developmental 
stages during primary culture and passage one (*** P < 0.001)

 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Page 6 of 9Farzaneh and Azizidoost BMC Veterinary Research          (2025) 21:674 

markedly higher in E10-derived hepatocytes compared to 
E5 (P < 0.001). Conversely, the expression of stemness and 
early development genes (CXCR4, OCT4, NANOG, and 
SOX17) were significantly downregulated in E10-derived 
hepatocytes (P < 0.001) (Fig. 4).

The function of chicken-derived hepatocytes
ELISA assay was used to quantify the activities of ALT 
and AST enzymes in the hepatocytes. The expression 
of ALT and AST in E10-derived hepatocytes were sig-
nificantly higher compared to E5-derived cells (P < 0.001) 
(Fig. 5A). Furthermore, functional analysis demonstrated 
that Albumin production was significantly lower in E10-
derived hepatocytes compared to E5-derived hepato-
cytes (P < 0.001). Conversely, urea secretion was higher 
in E10-derived hepatocytes compared to E5-derived cells 
(P < 0.01) (Fig. 5B).

Fig. 4  The expression of AFP, ALP, FOXA2, CYP3A4, CXCR4, OCT4, NANOG, and SOX17 from standard 2D monolayer cultures in E10-derived hepatocytes 
compared to E5-derived hepatocytes (*** P < 0.001)

 

Fig. 3  Formation of spheroids or hepatospheres in bacterial dishes and 
on agarose-coated plates in DMEM/F12 supplemented with 10% FBS me-
dium (P > 0.05)
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Fig. 5  Analysis the function of chicken-derived hepatocytes. (A) The activities of ALT and AST enzymes in E5- and E10-derived hepatocytes. (B) The pro-
duction of albumin and urea by hepatocytes (***P < 0.001, **P < 0.01)
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Discussion
Our findings indicate that E10 emerges as the most suit-
able stage for hepatocyte derivation. This suggests that 
the embryo’s developmental stage determines hepato-
cytes characteristics and proliferative capacity. Mor-
phologically, the hepatocytes illustrated a characteristic 
hexagonal structure with prominent nuclei and nucleoli, 
indicative of a well-developed and functional phenotype 
[20].

Hepatocytes from different developmental stages 
exhibited distinct proliferation rates. In primary culture, 
E10-derived hepatocytes demonstrated a significantly 
higher proliferation rate compared to those from E5 and 
E7. Upon passage to the first generation, the proliferation 
rates of hepatocytes continued to vary across the devel-
opmental stages. E10-derived hepatocytes maintained a 
significantly higher proliferation rate compared to those 
from E5 and E7. This indicates that the developmental 
stage exerts a sustained influence on the proliferative 
capacity of hepatocytes, even after subculturing.

In culture, the cells aggregated into spherical clusters, 
forming a three-dimensional architecture known as 
spheroids or hepatospheres, demonstrate the cells ability 
to form complex multicellular arrangements [21]. A simi-
lar process occurred on both agarose-coated plates and 
bacterial dishes, where the cells proliferated and created 
some aggregates as spheroids or hepatospheres.

Furthermore, the expression profile of hepatocyte-
specific genes (AFP, ALP, FOXA2, and CYP3A4) was 
significantly higher in E10-derived hepatocytes. The 
decreased expression of pluripotent-related genes (OCT4 
and NANOG) aligns with lineage commitment and to 
allow for functional specialization. The downregulation 
of OCT4 and NANOG is consistent with previous stud-
ies highlighting their role in maintaining pluripotency 
and self-renewal in embryonic stem cells, with their 
expression typically diminishing upon cellular differen-
tiation [22]. This transition from a pluripotent state to a 
more committed cell fate is crucial for the development 
and maturation of hepatocytes, allowing them to acquire 
functional properties essential for liver physiology [23].

We observed higher expression of both ALT and AST 
in E10-derived hepatocytes compared to those derived 
from E5, indicating a heightened metabolic activity in 
the E10 group. This elevation suggests enhanced liver 
function and increased cellular metabolic [24]. Albumin 
production was significantly lower in E10-derived hepa-
tocytes than in their E5-derived counterparts, which may 
reflect differences in cellular maturity or differentiation 
status between the two developmental stages. Conversely, 
E10-derived hepatocytes exhibited higher level of urea 
secretion. This increase may indicate enhanced urea cycle 
activity or nitrogen metabolism in E10-derived cells, 
potentially reflecting their greater metabolic activity.

We selected E5, E7, and E10 stages to capture key mat-
uration checkpoints. The E10 cells are dialing down genes 
linked to a primitive, multipotent state while ramping up 
classic hepatocyte markers such as AFP, ALP, FOXA2, 
and CYP3A4. This genetic transition shows a firm com-
mitment to the hepatocyte lineage. To really be confident 
that these cells are mature, more tests, including west-
ern blots to check levels of important CYP450 enzymes, 
a lidocaine clearance assay (for CYP1A2 activity), and 
functional assays for ammonia detoxification will require.

Several studies have explored the isolation and culture 
of avian liver cells for various research applications. For 
instance, Lee et al., isolated fetal liver cells from 15-day-
old chick embryos by digesting fetal liver tissues with 
VT solution (a 1:1 ratio of 0.25 trypsin and PBS) for 30 
min. The cells were cultured in Dulbecco’s medium 
(0.45% glucose) supplemented with 10% FBS at 39 °C in 
a 5% CO2, ultimately reaching a population of 6 × 10⁵ 
cells [25]. Feng et al. highlighted the utility of chicken 
liver cells for cultivating four types of adenoviruses [26]. 
Other research has suggested the utility of liver cells, par-
ticularly hepatocytes, as a suitable source with high viral 
receptor expression for propagating ALV-J (avian leuko-
sis virus) [27]. Mackei et al. demonstrated the suitability 
of chicken hepatocytes as a model for studying inflam-
matory response and liver stress in cell culture systems 
[28]. In a related avian model, Bao et al. investigated liver 
development and hepatocyte culture in duck embryos. 
They tracked morphological changes in the liver from the 
embryonic period through the first week post-hatching. 
They successfully isolated liver cells from 21-day-old 
duck embryos and revealed that the cultured liver cells 
exhibited robust growth. These findings enhance our 
understanding of in vivo liver growth, in vitro hepatocyte 
culture, and the study of hepatic lipid metabolism [29].

Conclusion
Overall, our findings provide valuable insights into the 
stage-specific characteristics of chicken hepatocytes and 
highlight their potential for cell-based assays and disease 
modeling. Further studies are warranted to elucidate the 
molecular mechanisms behind these developmental dif-
ferences and to explore the clinical implications of our 
results for disease research and regenerative medicine.
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